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Abstract

The current numerical investigation addresses the wall heat conduction effect on the natural-convection heat transfer within a two-
dimensional cavity, which is filled with a fluid-saturated porous medium. The problem configuration consists of two insulated horizontal
walls of finite thickness and two vertical walls which are maintained at constant but different temperatures. The generalized model of the
momentum equation, which is also known as the Forchheimer–Brinkman-extended Darcy model, is used in representing the fluid motion
inside the porous cavity. The local thermal equilibrium condition is assumed to be valid for the range of the thermophysical parameters
considered in the present investigation. The steady-state solution is sought from the undergoing investigation. The momentum and
energy transport processes within the porous cavity is examined through depicting the streamlines and isotherms for different domains
of a selected dimensionless groups. These dimensionless groups and their respective domains are as follows: W ¼ 0:0075–0:2, Kr ¼ 1–10,
ks=kf ¼ 0:1–100, Ra ¼ 104–106, Da ¼ 10�5–10�1, e ¼ 0:25–0:95 and AR ¼ 0:25–2. The significance of varying these parameters on the
predicated average Nusselt number is highlighted and discussed. Finally, the investigation is concluded by presenting the sensitivity
of the interface temperature upon varying the above dimensionless groups.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The phenomenon of convective heat transfer in a fluid-
saturated porous medium has received considerable atten-
tion due to its relevance in various applications such as bio-
medical engineering applications, drying processes, thermal
insulation, radioactive waste management, transpiration
cooling, geophysical systems and contaminant transport
in groundwater [1–7]. Comprehensive reviews of the exist-
ing studies on these topics can be found in recent mono-
graphs by Nield and Bejan [8], Vafai [9], AlAmiri [10],
Ingham and Pop [11,12], and Pop and Ingham [13]. Conju-
gate natural convection in enclosures where heat conduc-
tion in a solid wall of finite thickness is coupled with heat
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convection in an adjacent fluid has been studied extensively
in the literature [14–19]. Kim and Viskanta [14,15] analyzed
experimentally and numerically the effects of wall conduc-
tance on natural convection in square enclosures. They
found that heat conduction along the conducting adiabatic
walls simultaneously stabilize and destabilize the fluid in
the cavity. Meanwhile, conjugate natural convection in
enclosures filled with porous media has received less atten-
tion. This type of configuration is of interest in several
engineering applications. In particular, the solidification
process in porous media and building insulation layers.

Most of the studies available in the literature on natural
convection in enclosures filled with porous media consid-
ered vertical or horizontal layers heated isothermally [20–
22]. This assumption is not adequate in many engineering
applications. The analysis of natural-convection–conduc-
tion heat transfer in a square enclosure filled with porous
media and adjacent to a wall of finite thickness is of
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Nomenclature

AR aspect ratio, L=H
b width of the cavity wall
cp specific heat at constant pressure
Da Darcy number, K=H 2

F Forchheimer constant
g acceleration due to gravity
Gr Grashof number, gbDTH 3=m2

H height of the cavity
J unit vector oriented along the pore velocity

vector
k thermal conductivity
K permeability of the porous medium
Kr wall-to-fluid thermal conductivity ratio ðkw=kfÞ
L length of the cavity
Nu local Nusselt number, defined in Eqs. (12) and

(13)
Nu average Nusselt number, defined in Eq. (14)
p pressure
P dimensionless pressure, p=qðgbDTHÞ
Pr Prandtl number, m=a
Q total heat transfer
Ra Rayleigh number, Gr � Pr
t time
T temperature
T C temperature of the cold wall
T H temperature of the hot wall
v dimensional velocity vector

V dimensionless velocity vector, v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH
p

W dimensionless width of the wall, b=H
x x-coordinate
X dimensionless X-coordinate, x=H
y y-coordinate
Y dimensionless Y-coordinate, y=H

Greek symbols

a thermal diffusivity
b coefficient of thermal expansion
e porosity of the porous medium
k maximum-norm
m kinematic viscosity
h dimensionless temperature, ðT � T CÞ=ðT H � T CÞ
q density
r heat capacity ratio, beðqcpÞf þ ð1� eÞðqcpÞsc/

ðqcpÞf
s dimensionless time, t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH
p

=H

Subscripts

cond conduction
eff effective
f fluid
porous porous medium
s solid
w wall

A. Al-Amiri et al. / International Journal of Heat and Mass Transfer 51 (2008) 4260–4275 4261
practical importance to gain insight on the influence of the
existing coupling between walls and fluid-saturated porous
media on the fluid flow and heat transfer characteristics
[23–25]. Saeid [23,24] studied numerically steady conjugate
natural-convection in a two-dimensional porous enclosure
with finite wall thickness using the Darcy model. The out-
come was presented for various magnitudes of Rayleigh
numbers, wall thickness, wall-to-fluid thermal conductivity
ratio and the ratio of the solid-to-fluid thermal conductiv-
ity of the porous medium. The results illustrated that the
average Nusselt number increased with an increase in Ray-
leigh number and a reduced wall thickness. Furthermore,
numerical study of steady-state conjugate natural convec-
tion in a square porous cavity with horizontal walls of
finite thickness and isothermal vertical walls was studied
by Baytas et al. [25] using Darcy–Boussinesq approxima-
tion. Their results indicated that the flow characteristics
within the enclosure were significantly influenced by the
coupling effect between walls and fluid-saturated porous
medium. Moreover, Mbaye et al. [26] studied both analyt-
ically and numerically natural-convection heat transfer in
an inclined porous layer boarded by a wall of a finite thick-
ness and thermal conductivity value. A constant heat flux
was applied for heating and cooling the long sidewalls of
the rectangular enclosure while the other two walls were
kept insulated. The governing equations, derived from
the Brinkman-extended Darcy formulation, were solved
analytically, in the limit of a thin system, using the parallel
flow approximation. In addition, Kimura et al. [27] pre-
sented a review of conduction–convection conjugated nat-
ural convection in a fluid-saturated porous medium using
different configurations such as slender bodies, rectangular
slabs, horizontal cylinders and spheres.

The prime objective of the current numerical investiga-
tion is to appraise the momentum and energy transport
phenomena in a porous cavity boarder by a wall of a finite
thickness from one side. The vertical walls were subjected
to a temperature gradient while the horizontal walls were
kept insulated. It is worth noting that the majority of the
reviewed studies on conjugate natural convection in porous
media were based on Darcy’s law, which silences the inertia
and viscous effects on fluid flow and heat transfer. Since the
rigid matrix resistance in a porous structure deviates from
Darcy’s law at high velocities, a generalized flow model
(also known as the Brinkman–Forchheimer-extended
Darcy model) was utilized in the present investigation to
better analyze the transport processes in the presence of
the coupling effect between the wall and the fluid-saturated
porous medium. The investigation incorporates several
pertinent dimensionless groups in conducting the analyses.
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These groups are the dimensionless wall thickness, wall-to-
fluid thermal conductivity ratio, the porous medium solid-
to-fluid thermal conductivity ratio, Rayleigh number and
the physical aspect ratio of the cavity.
2. Mathematical formulation

The problem under investigation is a laminar two-
dimensional conjugate natural heat transfer convection in
a cavity filled with a porous medium. The physical domain
under consideration and coordinate system are shown in
Fig. 1. The left wall of thickness b is maintained at a con-
stant temperature T H and the right wall is maintained at a
constant temperature T C, while maintaining T H > T C. The
horizontal walls are assumed to be insulated. In addition,
the thermophysical properties of the fluid are assumed con-
stant, except for the density in the buoyancy term in the
momentum equations which is treated according to Bous-
sinesq model. Furthermore, the porous medium is consid-
ered homogeneous, isotropic and is saturated with a fluid
that is in local thermodynamic equilibrium with the solid
matrix of the porous medium.

By assimilating the above assumptions, the system of the
governing equations can be expressed in canonical forms
based on the volume average technique in the porous med-
ium such as [2,28]
Continuity equation:

r � hVi ¼ 0: ð1Þ

Momentum equation:

1

e
ohVi
os
þ hðV � rÞVi

� �
¼ �rhPif þ 1

e
ffiffiffiffiffiffi
Gr
p r2hVi

� hVi
Da

ffiffiffiffiffiffi
Gr
p � F effiffiffiffiffiffi

Da
p ½hVi � hVi�J þ h:

ð2Þ
L

Insulated boundary

H

b Insulated boundary

TH TC

Y

X

Wall

Porous
medium

Fig. 1. Schematic diagram of the physical model and coordinate system.
Energy equation:

r
oh
os
þ V � rh ¼ keff

kf

1

Pr
ffiffiffiffiffiffi
Gr
p r2h; ð3Þ

where

keff ¼ ekf þ ð1� eÞks and

r ¼ beðqcpÞf þ ð1� eÞðqcpÞsc=ðqcpÞf : ð4Þ

Meanwhile, the transport process within the wall can be
represented as

r2hw ¼ 0: ð5Þ
The above equations were normalized using the following
dimensionless parameters:

V ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH
p ; P ¼ p

qðgbDTHÞ ;

s ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH
p

H
; h ¼ T � T C

T H � T C

;

x ¼ ðx; yÞ
H

; W ¼ b
H
; ð6Þ

where b is the fluid thermal expansion coefficient, q the
fluid density, g the gravitational acceleration, P the dimen-
sionless pressure, V the dimensionless velocity vector,
Da ¼ K=KH 2 the Darcy number and W the dimensionless
wall thickness. In addition, the relevant Grashof number
and Prandtl number are given by Gr ¼ gbDTH 3=m2 and
Pr ¼ m=a, respectively.

The associated boundary conditions for the problem
under consideration can be expressed as

X ¼ �W and 0 6 Y 6 1 : V ¼ 0; hw ¼ 1; ð7Þ
X ¼ 1 and 0 6 Y 6 1 : V ¼ h ¼ 0;

Y ¼ 0; 1 : V ¼ oh
oY
¼ 0: ð8Þ

The heat flux equality at the interface ðX ¼ 0Þ can be sus-
tained by employing the following condition:

keff

oh
oX

�
porous

¼ kw

ohw

oX

�
solid

; ð9Þ

where kw is the thermal conductivity of the wall. The phys-
ical quantities of interest in this investigation are the local
Nusselt number and the average Nusselt number, which
are, respectively, defined by

X ¼ �b : Nuw ¼
Qwall

Qcond

¼ L
H

kw

kf

ohw

oX

� �
X¼�W

¼ AR
kw

kf

ohw

oX

� �
X¼�W

; ð10Þ

X ¼ 1 : Nuporous ¼
Qporous

Qcond

¼ L
H

keff

kf

ohporous

oX

� �
X¼1

¼ AR
keff

kf

ohporous

oX

� �
X¼1

; ð11Þ

Nu ¼
Z 1

0

NudY ; ð12Þ
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Fig. 2. Velocity and temperature profiles at mid-sections of the cavity for various mesh sizes (Ra ¼ 106, Da ¼ 10�3, W ¼ 0:2, Kr ¼ 5, ks=kf ¼ 100).
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where AR ¼ L=H is the aspect ratio of the cavity. Both
Nusselt number expressions listed in Eqs. (10) and (11)
should converge to the same result under steady-state
condition.

3. Numerical scheme

A finite element formulation based on the Galerkin
method is employed to solve the governing equations.
The application of this technique is well documented by
Taylor and Hood [29] and Gresho et al. [30]. In the current
investigation, the continuum domain is divided into a set of
non-overlapping regions called elements. Nine node quad-
rilateral elements with bi-quadratic interpolation functions
are utilized to discretize the physical domain. Moreover,
interpolation functions in terms of local normalized ele-
ment coordinates are implemented to approximate the
dependent variables within each element. Subsequently,
substitution of the approximations into the system of the
governing equations and boundary conditions yields a
residual for each of the conservation equations. These
residuals are then reduced to zero in a weighted sense over
each element volume using Galerkin method.
Table 1
Comparison of the average Nusselt number between the present results
and other works for various Grashof number and wall-to-fluid conduc-
tivity ratio ðKr ¼ kw=kfÞ
Kr Gr ¼ 103 Gr ¼ 104 Gr ¼ 105

1 5 10 1 5 10 1 5 10

Present 0.87 1.02 1.04 1.35 1.83 1.92 2.08 3.42 3.72
[16] 0.87 1.02 1.04 – – – 2.08 3.42 3.72
[17] 0.87 1.02 1.04 1.35 1.83 1.92 2.08 3.42 3.72
[19] 0.85 1.03 1.04 – – – 2.04 3.30 3.60
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Fig. 3. Comparison of the interface temperature distribution
The highly coupled and non-linear algebraic equations
resulting from the discretization of the governing equations
are solved using an iterative solution scheme called the seg-
regated-solution algorithm. The advantage of using this
method lies in that the global system matrix is decomposed
into smaller submatrices and then solved in a sequential
manner. This technique results in considerably fewer stor-
age requirements. A pressure projection algorithm is uti-
lized to obtain a solution for the velocity field at every
iteration step. Furthermore, the pressure projection version
of the segregated algorithm is used to solve the non-linear
system. In addition, the conjugate residual scheme is used
to solve the symmetric pressure-type equation systems,
while the conjugate gradient squared method is used for
the non-symmetric advection–diffusion-type equations.
4. Grid refinement

Many numerical experiments of various mesh sizes is
performed to attain grid-independent results and to deter-
mine the best compromise between accuracy and minimiz-
ing computer execution time. As such, a variable grid-size
system is employed in the present investigation to capture
the rapid changes in the dependent variables especially near
the boundaries and the wall–fluid interface where the major
0.6 0.8 1.0

Y

Kr = 1 

Gr = 105

between the present results and Hribersek and Kuhn [17].

Table 2
Comparison of the average Nusselt number in a cavity filled with a porous
medium between the present results and that of Nithiarasu et al. [31] for
various Rayleigh numbers (e ¼ 0:9, Da ¼ 10�2)

Ra Nu (Present) Nu [28] % Error

1� 103 1.018 1.023 0.49
1� 104 1.632 1.64 0.49
1� 105 3.95 3.91 1.02
5� 105 6.69 6.70 0.15
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gradients occur inside the boundary layer. To test and
assess grid independence of the solution scheme, numerical
experiments were performed as shown in Fig. 2 for
Ra ¼ 106 using 40� 40, 60� 60 and 80� 80 grid nodes
in the porous region, respectively. The results are almost
the same even with the relatively coarser grid and this is
due to the special arrangement used for the grid nodes
Fig. 4. Effect of varying wall thickness on the streamlines and is
(i.e., non-uniform spacing), which renders good results
even for relatively coarse grids. In the undergoing investi-
gation, a grid of 80� 80 nodes was incorporated for the
porous region.

The transient solution is advanced with a time step of
10�3 until steady-state solution is obtained. The steady-
state solution was assumed to be converged when the var-
otherms using Kr ¼ 5, ks=kf ¼ 100, Da ¼ 10�3 and Gr ¼ 105.
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iation of the average Nusselt number between two consec-
utive time steps is less than 0.1%. An additional check on
the convergence to reach a steady-state solution, the stan-
dard relative error based on the maximum-norm (k) was
used:

k ¼ kV
nþ1 � V nk1
kV nþ1k1

þ kh
nþ1 � hnk1
khnþ1k1

6 10�6; ð13Þ

where the operator k k1indicates the maximum absolute
value of the variable over all the grid points in the compu-
tational domain.

5. Validation

The present numerical code was validated against the
benchmark problem of conjugate natural convection in a
square cavity with a conducting side wall. The cavity was
heated at the left wall and cooled at the right side while
the rest of the boundaries were insulated. Table 1 docu-
ments the comparison of the average Nusselt number
between the outcome of the present code and the available
results found in the literature for various Grashof numbers
and thermal conductivity ratios. The comparison was in
excellent agreement with the results reported by Kaminski
and Prakash [16] and Hribersekm and Kuhn [17]. Further-
more, the impact of the wall-to-fluid thermal conductivity
ratio ðKr ¼ kw=kfÞ on the wall–fluid interface temperatures
is illustrated in Fig. 3. Fig. 3 shows that both results are in
excellent agreement. An additional verification on the accu-
racy of the present numerical code is displayed in Table 2,
which demonstrates a comparison of the average Nusselt
number between the present results and the numerical
results of Nithiarasu et al. [31] using the generalized
momentum equation of porous medium. The comparisons
reveal excellent agreement with the reported studies.
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Fig. 5. Temperature distribution at the wall–porous interface for di
6. Results and discussion

The steady-state results presented in this work are gen-
erated for different pertinent dimensionless groups: Ray-
leigh number ðRa ¼ 103–107Þ, wall-to-fluid thermal
conductivity ratio ðKr ¼ kw=kf ¼ 0:01–10Þ, wall thickness
ðW ¼ 0:0075–0:2Þ, solid-to-fluid thermal conductivity ratio
ðks=kf ¼ 1–100Þ, Darcy number ðDa ¼ 10�5–10�1Þ, poros-
ity ðe ¼ 0:25–0:95Þ, and aspect ratio ðAR ¼ 0:25–2Þ. The
default parameters are assigned values of AR ¼ 1,
W ¼ 0:2, Kr ¼ 5, ks=kf ¼ 100, e ¼ 0:9, Da ¼ 10�3, Pr ¼ 1,
and Gr ¼ 105 unless otherwise stated. The predicted field
variables are presented in terms of the streamlines, iso-
therms and average Nusselt number.
6.1. Effect of wall thickness ðW Þ

The dimensionless wall thickness is defined as W ¼ b=H .
The effect of wall thickness on the fluid motion and iso-
therms within the cavity is depicted in Fig. 4. The following
parameters were fixed to silence their effects: Kr ¼ 5,
ks=kf ¼ 100 and Gr ¼ 105. The flow circulation in the por-
ous medium is clockwise with a flow upward along the hot
left wall and downward at the left cold wall. Further, a cen-
tral vortex appears as the dominant characteristic of the
flow for all the considered values of the dimensionless wall
thickness. It can be observed from the isotherm contours
that conduction heat transfer regime is manifested in the
wall while the convection contribution to the overall energy
transport is vivid in the porous cavity. As the wall thickness
increases, the strength of the circulation within the porous
layer decreases. This is due to the fact that, with the
increase in wall thickness, the effective temperature differ-
ence that sets up the flow in the porous medium, decreases
and the flow strength also diminishes. This can be observed
0.6 0.8 1.0

Y

W = 0.05

W = 0.075

W = 0.15

W = 0.2 

fferent wall thickness using Kr ¼ 5, Da ¼ 10�3 and ks=kf ¼ 100.
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by the change in the isotherms strengths within the porous
medium with the increase in the wall thickness. Apparently,
such a trend impacts the average Nusselt number predic-
tions which tend to decline with the increase in wall thick-
ness (the value of the average Nusselt number is between
parentheses for each case in Fig. 4). This is attributed to
the fact that, with an increase in the wall thickness, the tem-
perature difference between the solid–porous interface and
Fig. 6. Effect of varying wall-to-fluid thermal conductivity ratio on streamli
the cold boundary (i.e., right wall) decreases as illustrated
in Fig. 5 and, thus, reducing the magnitude of the average
Nusselt number.

It is worth mentioning that the temperature at the inter-
face increases vertically along the wall and this is associated
with a fact that the clockwise rotating fluid carries energy
from the left wall and, consequently, becomes hot as it rises
up against the interface. On the contrary, as the fluid flows
nes and isotherms using W ¼ 0:2, ks=kf ¼ 100, Da ¼ 10�3 and Gr ¼ 105.
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downward along the cold wall, its temperature decreases
gradually which is reflected on the interface temperature
at Y ¼ 0.

6.2. Effect of wall-to-fluid thermal conductivity ratio ðKrÞ

Fig. 6 demonstrates that the wall-to-fluid thermal con-
ductivity ratio has a significant effect on the streamlines
and isotherms. The following parameters were kept con-
stants: AR ¼ 1, W ¼ 0:2, ks=kf ¼ 100 and Gr ¼ 105. For
poorly conducting wall scenarios, i.e., Kr ¼ 0:01; 0:1, the
results merely render a conduction heat transfer regime
as vivid from the one-dimensional wall conduction pattern.
In addition, the results shown in Fig. 6 signals that natural
convection inside the porous medium has totally dimin-
ished as manifested from the streamlines values, which
are driven by the temperature difference between the inter-
face and the cold boundary. Therefore, the temperature
within the porous medium is almost uniform and equal
to the cold boundary temperature for poorly conducting
wall. As Kr increases from 1 to 10, it can be observed that
the intensity of circulation within the porous medium
intensifies. This is due to the increase in the sustained tem-
perature difference between the solid–porous interface tem-
perature and the cold boundary increases as a result of an
increase in Kr magnitude. Moreover, the isotherms are
observed to depart from its vertical pattern in the cavity
which indicates that the heat transfer mechanism has chan-
ged from a dominant conduction heat transfer regime to
encompass convection heat transfer. Thus, the contribution
of the natural-convection heat transfer to the overall
energy transport mechanism increases with the increase in
the wall-to-fluid thermal conductivity ratio.

Fig. 6 illustrates the effect of the wall-to-fluid thermal
conductivity ratio on the average Nusselt number predica-
tions. The value of the average Nusselt number is between
-0.2
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Fig. 7. Temperature distribution at the solid–porous interface for different w
parentheses for each case in Fig. 6. The average Nusselt
number is found to increase with an increase Kr magnitude.
This is a logical result since increasing the thermal conduc-
tivity of the wall will decrease the thermal resistance of the
system under consideration. Accordingly, this will increase
the strength of convection intensity in the cavity, and
hence, enhances the Nusselt number results. Fig. 7 shows
the variation of solid–porous interface temperature for dif-
ferent values of wall-to-fluid thermal conductivity ratio.
When considering low Kr values such as 0.01 and 0.1, the
wall behaves as an insulating layer. As a result, the inter-
face temperature becomes almost identical to the cold
boundary temperature. For a high Kr value, however, the
conjugate wall becomes very much conductive, which
brings about an appreciated increase in the interface tem-
perature resulting in heat transfer augmentation within
the cavity.

6.3. Effect of the porous medium solid-to-fluid thermal
conductivity ratio ðks=kfÞ

The effect of varying the porous medium solid-to-fluid
thermal conductivity on streamlines and isotherms is pre-
sented in Fig. 8 for a square cavity, i.e., AR ¼ 1. It can
be noted from Fig. 8 that the central vortex is elliptic in
shape for low ks=kf values. It is apparent that as the con-
ductivity ratio increases, the porous medium becomes more
conductive causing the central vortex becomes nearly circu-
lar. Further, the isotherms within the porous medium are
observed to pursue a less two-dimensional pattern with
the increase in ks=kf value, which signals that the conduc-
tion heat transfer regime is dominating the overall energy
transport process within the porous cavity. In addition,
Fig. 9 illustrates the implications of varying ks=kf on the
average Nusselt number and the average interface temper-
ature. The overall heat transfer rate increases almost line-
0.6 0.8 1.0

Kr = 10 

Kr = 5 
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all thermal conductivity ratio using W ¼ 0:2, Da ¼ 10�3 and ks=kf ¼ 100.



Fig. 8. Effect of varying the porous medium thermal conductivity ratio ðks=kf ) on the streamlines and isotherms using W ¼ 0:2, Da ¼ 10�3, Kr ¼ 5 and
Gr ¼ 105.
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arly with an increase in the thermal conductivity ratio.
When increasing the ks=kf value from 20 to 100, for exam-
ple, the average Nusselt number is found to increase by 2.1
folds. Furthermore, it is worth noting that the porous med-
ium becomes very much conductive as ks=kf increases. Such
an observation is particularly vivid at ks=kf ¼ 100. This
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subsequently causes the average interface temperature and
the spatial variation of the interface temperature to
decrease with the increase in ks=kf value as displayed in
Figs. 9 and 10. The results presented in Figs. 8–10 demon-
strate an interesting observation, which up to the authors’
knowledge were not reported previously in the literature.
In referring back to Fig. 8, it exhibits that the flow activities
intensify as the thermal conductivity increases for ks=kf 6

25. When considering kskf P 50, however, flow activities
deteriorate and this is associated with a decrease in the
average interface temperature, which is considered the driv-
2

4

6

8

0.0 20.0 40.0

N
u

fs kk

Gr = 105

Fig. 9. Effect of varying the porous medium thermal conductivity ðks=kf ) on the
Da ¼ 10�3 and Kr ¼ 5.
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Fig. 10. Temperature distribution at the solid–porous interface for diff
ing mechanism for natural convection within the porous
cavity. Although the average interface temperature
decreases as ks=kf increases, the average Nusselt number
is found to increase as displayed in Fig. 9. Needless to
say, the average Nusselt number is the product of the effec-
tive thermal conductivity of the porous medium, which is a
function of ks=kf , and the temperature gradient between the
interface and the cold wall. Hence, despite the depreciation
in the temperature gradient which hinders flow activities
within the porous medium when considering larger values
of ks=kf , the attained Nusselt number prediction improves
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since it is a function of the product of ks=kf and the temper-
ature gradient between the interface and the cold wall.

6.4. Effect of Rayleigh number ðRaÞ

The effect of Rayleigh number on the streamlines and
isotherms is shown in Fig. 11 using AR ¼ 1, W ¼ 0:2,
Kr ¼ 5 and ks=kf ¼ 100. For low Rayleigh number values,
the streamlines are characterized by a single main vortex
Fig. 11. Effect of varying the Rayleigh number on the streamlines an
with that occupies the entire cavity body. The correspond-
ing isotherms are mostly parallel to the vertical walls,
which signal that most of the heat transfer is performed
by conduction. The contribution of convection is notice-
able at high Rayleigh numbers as evident by the departure
of the isotherms from the vertical pattern. As Rayleigh
number increases is elevated to Ra ¼ 106, the central vortex
becomes distorted into an elliptic shape and the presence of
convection becomes more pronounced. This is likely asso-
d isotherms using W ¼ 0:2, Kr ¼ 5, Da ¼ 10�3 and ks=kf ¼ 100.
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Fig. 12. Temperature distribution at the solid–porous interface for different Rayleigh numbers using W ¼ 0:2, Kr ¼ 5, Da ¼ 10�3 and ks=kf ¼ 100.
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ciated to the high temperature gradients near the vertical
walls. Further increase in Rayleigh number to Ra ¼ 107

causes the central vortex to elongate further with its center
close to the cold wall. This can be attributed to high con-
vection current within the cavity which also causes a reduc-
tion in the temperature gradients in the center of the cavity
due to good fluid mixing as shown in Fig. 11. What is
more, the impact of Rayleigh number on the interface tem-
perature is presented in Fig. 12. This figure demonstrates
that the interface temperature is about uniform for low
Rayleigh numbers which indicates that the heat transfer
is achieved primarily by conduction. As Rayleigh number
increases to Ra ¼ 105, the intensity of convection within
the cavity picks up and, consequently, the average interface
temperature decreases with an increase in Rayleigh num-
ber. Such an observation is further pronounced for
Ra ¼ 106 and Ra ¼ 107, respectively.
6.5. Effect of aspect ratio ðAR ¼ L=HÞ

The effect of the cavity aspect ratio on the streamlines
and isotherms is depicted in Fig. 13. The contribution of
natural convection can be observed from the isotherm pat-
terns when considering AR ¼ 2 and AR ¼ 1. As the aspect
ratio decreases further, the central vortex of the streamlines
elongates in the vertical direction and the intensity of circu-
lation within the porous medium decreases. The buoyancy
forces with the cavity depreciate as the fluid is expected to
travel a longer vertical distance without an increase in the
sustained temperature difference. Such an effect impacts
the isotherms, which become more parallel to the vertical
wall indicating overwhelmed conduction heat transfer
regime especially when using the small aspect ratio (i.e.,
AR ¼ 0:25) considered in this investigation. Moreover, it
is observed that as the aspect ratio reduces, the vertical
boundary layers of the hot and cold walls approach each
other and are positioned to be in better thermal communi-
cation with each other. This will reduce the degree of heat-
ing and cooling on both wall boundary layers and, hence,
drops the overall average Nusselt number as shown
between parentheses for each case in Fig. 13.
6.6. Effect of Darcy number and porosity of porous medium

The effect of Darcy number and porosity of porous med-
ium on the average Nusselt number are illustrated in Figs.
14 and 15. For small values of the Darcy numbers, the fluid
experiences a pronounced large resistance as it flows
through the porous matrix causing the flow to cease in
the porous region. This subsequently results in hindering
flow activities in the porous region. As the porosity of
the porous medium decreases, the average Nusselt number
increases as depicted in Fig. 15. This is associated with an
increase in the effective thermal conductivity of porous
medium as the porosity decreases.
7. Heat transfer correlation

The average Nusselt number is correlated over a wide
range of various pertinent dimensionless groups employed
in this investigation, such as the Rayleigh number Ra ¼
103–107, wall thickness W ¼ 0:0075–0:2, wall-to-fluid ther-
mal conductivity ratio Kr ¼ 1–10, porous medium thermal
conductivity ratio ks=kf ¼ 1–100, Da ¼ 10�3, e ¼ 0:9, and
aspect ratio AR ¼ 0:25–2. This correlation can be mathe-
matically expressed as follows:

Nu ¼ 0:0606ðW � ARÞ�0:1422ðAR

� ks=kfÞ0:444ðKrÞ0:4348ðRaÞ0:1587ðARÞ0:0752
; ð14Þ



Fig. 13. Effect of varying the aspect ratio on the streamlines and isotherms using W ¼ 0:2, Kr ¼ 5, ks=kf ¼ 100, Da ¼ 10�3 and Gr ¼ 105.
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where the confidence coefficient for the above equation is
R2 ¼ 97:8%. This correlation reveals that the average
Nusselt number value has the strongest dependency on
Kr and ks=kf , while it has the least dependency on the
aspect ratio. Meanwhile, the exponents of the Ray-
leigh number Ra and the dimensionless wall thickness
W are found to be in close proximity. Such an
observation is a vital tool when considering designing a
configuration with a porous medium and a conjugate
wall.
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8. Conclusion

A numerical investigation using finite element method is
carried out for steady conjugate natural convection in a
fluid-saturated porous cavity boarded to a conducting ver-
tical wall. In this investigation, the fluid motion is predicted
using the general formulation of the porous medium, which
accounts for the inertial and solid viscous effect. In addi-
tion, the momentum and energy transport processes are
explored and results of streamlines, isotherms, wall inter-
face temperature and average Nusselt numbers are pre-
sented for a wide range of dimensionless parameters.
These parameters include the conjugate wall thickness,
wall-to-fluid thermal conductivity ratio, solid-to-fluid ther-
mal conductivity of the porous medium, Rayleigh number
and aspect ratio. The results showed that as the wall thick-
ness increases, the temperature difference between the inter-
face temperature and the cold boundary reduces, which
accordingly brings about a reduction in the overall Nusselt
number. However, appreciated increase in the fluid circula-
tion intensity within the porous medium was achieved
when considering thin wall thickness, large wall-to-fluid
thermal conductivity ratio and large aspect ratio values.
The numerical results have indicated that the energy is
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primarily transferred by conduction heat transfer in the
wall and porous medium for small Rayleigh numbers. Fur-
thermore, predicted average Nusselt number was observed
to increase with the increase in the Rayleigh number.
Moreover, the higher solid-to-fluid thermal conductivity
ratio of the porous medium is found to significantly
improve the average Nusselt number. Finally, a Nusselt
number correlation was established for a wide range of
the considered dimensionless groups in this investigation.
The Nusselt number correlation was found to be a strong
function of Kr and ks=kf , while it was relatively a weak
function of the cavity aspect ratio.
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